Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Numerous temperature and environmental proxies are based on glycerol dialkyl glycerol tetraethers (GDGTs), which are membrane lipids commonly found in the water columns and sediments of lakes. The TEX86 temperature proxy is based on isoprenoid GDGTs, which are produced by members of the archaea, and is used to reconstruct lake surface temperature. Branched GDGTs are lipids produced by bacteria and form the basis of the MBT′5ME temperature proxy. Although many outstanding questions still exist regarding proxies based on isoprenoid and branched GDGTs, both compound classes have been relatively well-studied in lakes. More recently, other types of GDGTs and related compounds are increasingly being reported from lacustrine sediments including hydroxylated GDGTs (OH-GDGTs) and glycerol monoalkyl glycerol tetraethers (GMGTs). In the process of generating lacustrine TEX86 or MBT′5ME temperature records, we noted that OH-GDGTs or GMGTs (or both) are frequently present. The RI-OH, based on OH-GDGTs, recently has been proposed as a temperature proxy in lakes while GMGTs are associated with oxygen-deficient environments. Here we examine distributions of OH-GDGTs and GMGTs in a variety of lakes that also have existing TEX86 or MBT’5ME temperature reconstructions. These lakes range from small to large, shallow to deep, tropical to arctic, differ in oxygenation state, and have sedimentary records covering timespans from the Holocene to multiple glacial-interglacial cycles. Study lakes include El’gygytgyn (arctic Russia), Malawi (tropical southeast Africa), Issyk Kul (Kyrgyzstan), Lake 578 (Greenland), and high elevation lakes in the central Andes (South America). We explore the presence/absence of these compounds in contrasting depositional environments and examine their GDGT distributions in relationship to temperature variability, oxic/anoxic conditions, hydroclimate fluctuations, and other geochemical/environmental parameters.more » « lessFree, publicly-accessible full text available December 11, 2025
-
Abstract BackgroundThe global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. ResultsRespondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. ConclusionThe influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.more » « less
An official website of the United States government
